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Recent experimental and numerical studies have shown that the interaction between a
localized vortical disturbance and the shear of an external base flow can lead to the forma-
tion of counter-rotating vortex pairs and hairpin vortices that are frequently observed in
wall bounded and free turbulent shear flows as well as in subcritical shear flows. In this
paper an analytical-based solution method is developed. The method is capable of follow-
ing (numerically) the evolution of finite-amplitude localized vortical disturbances embed-
ded in shear flows. Due to their localization in space, the surrounding base flow is assumed
to have homogeneous shear to leading order. The method can solve in a novel way the
interaction between a general family of unbounded planar homogeneous shear flows
and any localized disturbance. The solution is carried out using Lagrangian variables in
Fourier space which is convenient and enables fast computations. The potential of the
method is demonstrated by following the evolved structures of large amplitude distur-
bances in three canonical base flows, including simple shear, plane stagnation (exten-
sional) and pure rotation flows, and a general case. The results obtained by the current
method for plane stagnation and simple shear flows are compared with the published
results. The proposed method could be extended to other flows (e.g. geophysical and rotat-
ing flows) and to include periodic disturbances as well.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

During the last 50 years it has become clear that although wall bounded turbulent shear flows are characterized by un-
steady, seemingly chaotic motion, in fact, however, the motion is not random and it has been observed to be governed by
well organized coherent vortical structures. In particular, the observation of counter-rotating streamwise vortices (CVP’s),
which lead to the formation of low and high-speed velocity regions (streaks), observed in the near wall region, and hair-
pin-shaped vortices extending across the boundary layer. Since their first experimental identification by Kline et al. [1], these
coherent structures have come under intense investigations regarding their characterization, generation and sustenance
mechanisms (e.g. [2,3]). The presence of streaky structures and their further breakup and appearance of hairpin vortices
has been also observed in transitional flows (e.g. in laminar boundary layers [4]; subcritical channel flow [5]; pipe flow
[6]). In free shear layers pairs of counter-rotating quasi-streamwise rib vortices are formed in the braid region, connecting
the bottom part of the upstream spanwise Kelvin–Helmholtz roller with the top part of the downstream one (e.g. [7]).
. All rights reserved.
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The similarity of the coherent structures naturally occurring in different fully developed boundary turbulent shear flows
as well as in transitional flows and free shear layers suggests the existence of a basic mechanism responsible for the forma-
tion of these structures, under various base flow conditions. The common elements for all such flows are the shear of the base
flow and the presence of a localized vortical disturbance. Recently, combining experimental, numerical and theoretical efforts,
it was demonstrated [8–12] that a simple model, which takes into account only the interaction between a localized vortical
disturbance and a laminar shear base flow, is capable of reproducing the generation process and characteristics of the coher-
ent structures. This is schematically shown in Fig. 1. The interaction of a localized vortical disturbance (the orange vortex
shown in the center of the figure) with pure shear flow (shown in the top left corner) results in the generation of a pair
of streamwise vortices, in case the magnitude of the initial vortex is small and in the formation of a hairpin vortex when
the initial magnitude is sufficiently high. This was shown numerically by Suponitsky et al. [11] (the two pictures in the
top right corner). A similar process was experimentally obtained by Svizher and Cohen [5] when a disturbance was placed
in Plane Poiseuille flow. The hairpin vortex shown in the middle right part was obtained by holographic particle image veloc-
imetry (HPIV). Moreover, this simple interaction between a localized vortex and pure shear results in other characteristics
such as the spanwise separation between the two elongated vortical regions of the CVP (expressed in terms of wall units), the
inclination angle of the hairpins and their convective velocity, which correspond well to those observed in turbulent wall
bounded shear flows. Similarly when a vortex dipole is placed in stagnation flow, CVP is developed along the principal axes
of shear of the extensional flow [12] (bottom right corner). An example of such stagnation flow is the braid region of a tur-
bulent mixing layer (shown by the red arrows in the bottom left picture) resulting from the superposition of the shear of the
mixing layer and the Kelvin–Helmholtz spanwise instability ‘rollers’.

The above brief summary demonstrates the possible significant role of localized disturbances in the evolution of several
key coherent structures in various turbulent and transitional shear flows. By localized vortical disturbance it is meant that all
the disturbance dimensions are much smaller than the characteristic length scale of the base flow. Accordingly, relative to
the localized disturbance, the surrounding field may be considered as ‘simple’ laminar shear flow where the velocity com-
ponents are (at most) linear functions of the coordinates. Thus, the main objective of the present work is to develop an accu-
rate and efficient analytical-based method which can predict the nonlinear evolution of a localized dipole vortex in
unbounded homogeneous shear flows. The proposed method solves efficiently (in Lagrangian space) the full Navier–Stokes
equations by splitting it into ‘base’ (V) and ‘disturbance’ (v) equations (details of which are given below). The nonlinear equa-
tions corresponding to the disturbance are solved by considering a constant base flow strain matrix (@V/@x).

The use of linear equations to describe the evolution of a small disturbance embedded in base flow with constant strain
matrix has been proved to be extremely useful to study the effect of rapid distortion on turbulence caused by the underlying
shear flows. Analytical progress is assured in such cases due to the linearity of the governing equations. An excellent review
of this subject and the ‘problems’ of turbulence is carried out by [13]. The present method begins with the usual Fourier
transform of the equations, however with time-dependent wave numbers. The use of time-dependent wave number is cer-
tainly not novel and has been applied for stability problems in constant-shear flows beginning from the pioneering paper by
Kelvin [14] (see also, for example, [15–17]). In the present paper an attempt is made to apply this approach in order to follow
the nonlinear evolution of localized disturbances. The method is made efficient by solving the problem in a Fourier–Lagrang-
ian space. Even though the price paid for passing onto Lagrangian space is a slight increase in complexity of the problem
formulation, it is overshadowed by the efficiency and the ease of use, which the method provides (as demonstrated below).
=>=>++
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Fig. 1. Effect of interaction between shear flow and a localized disturbance. The numerical and experimental results are taken from [8].
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The following proposed method can solve the interaction between any general base flow with constant strain matrix and
a finite-amplitude localized disturbance. The capability of the method is demonstrated by following the evolved structures of
large amplitude disturbances in three canonical base flows, namely simple shear, plane stagnation (extensional) and pure
rotation flows. In addition, one example of a more general case is provided. The results concerning the nonlinear develop-
ment of initially strong vortices for plane stagnation and Couette flows are compared and contrasted with previously pub-
lished results using direct numerical simulation (DNS). It should be noted that the method could be easily extended to
geophysical flows in order to follow the nonlinear evolution of thermals in unbounded environment with or without uniform
stratification of density (or temperature) and with constant shear. It could also be extended to rotating flows, e.g. the inves-
tigation of the nonlinear evolution of a disturbance in Taylor–Couette flow (i.e. between two rotating cylinders) which for
strongly localized disturbances may be considered as constant-shear flow with the presence of Coriolis force. Such an exper-
iment is described in [18], while the linear stage of vortex evolution was followed (analytically) by this method in [19]. Be-
sides following the nonlinear evolution of a localized disturbance, the method can be utilized to study the nonlinear
evolution of periodic disturbances in flows with homogenous shear. Furthermore, combination of the two types of initial dis-
turbances (localized and periodic) enables one to study several key transition scenarios (e.g. the use of the method to follow
secondary instabilities and to understand the generation of packets of hairpins).

2. Mathematical–numerical approach

2.1. Problem formulation

We consider the evolution of a localized vortical disturbance. Accordingly, the initial disturbed vorticity is assumed to be
confined to a small region in the flow field. Since the advection of the small disturbed region as a whole is not of interest, we
use a Galilean frame, moving with the disturbance, instead of the laboratory frame. Consequently, the origin of the coordi-
nate system is defined to be some point within the initially disturbed region at which the base flow velocity is stationary
(V(0) = 0). A right handed cartesian coordinate system x = (x,y,z) is used with V = (U + u,V + v,W + w) being the corresponding
velocity components. Capital and small letters designate, respectively, the base and disturbance velocity components. Taking
advantage of the smallness of the disturbed region, it is assumed that a typical dimension of which (d) is much smaller than a
dimensional length scale D corresponding to an Oð1Þ change of the external velocity. Accordingly, the base velocity and vor-
ticity fields around the origin are approximated by Taylor series expansions. Using the magnitude of the background shear
(or vorticity) jXj and the length scale D as the appropriate scales representing the external base flow, the Taylor series
expansions are given by
Fig. 2.
(X = r(
VmðxÞ ¼
@Vmð0Þ
@xn

xn � 1þO j x j
D

� �� �
; XmðxÞ ¼ Xmð0Þ � 1þO j x j

D

� �� �
; ð1Þ
where jxj/D� 1, m = 1,2,3 and repeating indices imply the usual summation convention (here, for n = 1,2,3). Thus, with re-
spect to finite-amplitude localized disturbances, the base flow velocity can be represented to leading order by its gradient
tensor.

Without loss of generality the velocity and vorticity vectors for the planar case are respectively given by
V ¼ �1
2
ðXþ rÞy;�1

2
ðr�XÞx;0

� �
; X ¼ ð0;0;XÞ; ð2Þ
where r and X are two constants representing the shear and vorticity of the base flow. The base flow is respectively hyper-
bolic (Fig. 2a), elliptic (Fig. 2b) or pure shear (Couette flow, Fig. 2c) for jrj > jXj, jrj < jXj or jrj = jXj.

The equation describing the evolution of vorticity (x) associated with a 3D finite-amplitude localized disturbance in
incompressible viscous base flow is
Base flow examples: (a) hyperbolic (plane stagnation X = 0, r(=�80[1/s]) < 0); (b) elliptic (pure rotation r = 0, X(=40[1/s]) > 0) and (c) simple shear
=�40[1/s]) < 0).
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@x
@t
þ ðV � $Þx� ðx � $ÞV � ðX � $Þv ¼ mDxþ ðx � $Þv � ðv � $Þx; ð3Þ
where t is time, m the kinematic viscosity and the disturbance vorticity x and velocity v are related by x =r� v.
In what follows it is convenient to interchangeably associate the cartesian coordinates x, y and z with the subscripts 1, 2

and 3, respectively. Substituting (2) into (3), the three equations for the three disturbance vorticity components are
Lx1 �
1
2
ðX� rÞx2 �X

@v3

@x1
¼ mDx1 þ N1; ð4aÞ

Lx2 þ
1
2
ðXþ rÞx1 �X

@v3

@x2
¼ mDx2 þ N2; ð4bÞ

Lx3 �X
@v3

@x3
¼ mDx3 þ N3; ð4cÞ
where L is the convective operator:
L ¼ @

@t
þ V1

@

@x1
þ V2

@

@x2
¼ @

@t
� 1

2
ðrþXÞx2

@

@x1
� 1

2
ðr�XÞx1

@

@x2
; ð5Þ
and Nm, m = 1,2,3 represent the corresponding nonlinear terms, i.e.
Nm ¼ xn
@vm

@xn
� vn

@xm

@xn
; ð6Þ
for which the summation convention is applied. It should be noted that (4c) could be alternatively replaced by the diver-
gence free condition, i.e.
@x1

@x1
þ @x2

@x2
þ @x3

@x3
¼ 0: ð7Þ
2.2. Transformation into Fourier space

The set of Eq. (4) are first Fourier transformed via
f̂ mðkÞ ¼
1

ð2pÞ3
Z

fmðrÞ expð�ikrÞd3x; f mðrÞ ¼
Z

f̂ mðkÞ expðikrÞd3k; ð8Þ
where m = 1,2,3, f̂ mðkÞ being the Fourier transform and fm(r) its inverse transform, r = (x,y,z) is the real space physical vector
and k its corresponding wave number vector in Fourier space.

The resulted set of equations is:
Lkx̂1ðkÞ �
1
2
ðX� rÞx̂2ðkÞ � ik1Xv̂3ðkÞ ¼ �mk2x̂1ðkÞ þ bN1ðkÞ; ð9aÞ

Lkx̂2ðkÞ þ
1
2
ðXþ rÞx̂1ðkÞ � ik2Xv̂3ðkÞ ¼ �mk2x̂2ðkÞ þ bN2ðkÞ; ð9bÞ

Lkx̂3ðbkÞ � ik3Xv̂3ðkÞ ¼ �mk2x̂3ðkÞ þ bN3ðkÞ; ð9cÞ
where k2 ¼ k2
1 þ k2

2 þ k2
3 and the operator Lk is given by
Lk ¼
@

@t
þ 1

2
ðrþXÞk1

@

@k2
þ 1

2
ðr�XÞk2

@

@k1
: ð10Þ
The Fourier transform of each one of the products included in Nm (see (6)) is the convolution of the corresponding Fourier
transforms. Thus the expression for bNmðkÞ can be written as:
bNmðkÞ ¼ i
Z

d3k0 kn vmðk0Þxnðk� k0Þ � vnðk0Þxmðk� k0Þ
� �� 	

: ð11Þ
2.3. Transition into Lagrangian variables in k-space

Following [9] the resulted set of Eq. (9) is expressed in terms of Lagrangian coordinates in the Fourier space. For this, we
demand that the operator Lk be the substantial derivative along an unperturbed trajectory in k-space, i.e.
Lk ¼
@

@t
þ 1

2
ðrþXÞk1

@

@k2
þ 1

2
ðr�XÞk2

@

@k1
� d

dt
¼ @

@t
þ dk1

dt
@

@k1
þ dk2

dt
@

@k2
þ dk3

dt
@

@k3
: ð12Þ
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This leads to the following set of equations describing the temporal evolution of the wave vector k:
dk1

dt
¼ 1

2
ðr�XÞk2;

dk2

dt
¼ 1

2
ðXþ rÞk1;

dk3

dt
¼ 0; ð13Þ
the solution of which is:
k ¼ M̂q; M̂ ¼
cosh jt k1=2 sinh jt 0

k�1=2 sinhjt cosh jt 0
0 0 1

0
B@

1
CA for k – 0; ð14Þ
where the initial value of k(t = 0) = q and the base flow parameters j and k are respectively defined as:
j ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �X2

p
� signðrÞ; k ¼ r�X

rþX
: ð15Þ
It is noted that the matrix ½cMðtÞ�T is closely related to the transformation matrix used by Rogallo [15], which appears when
the transformation to Lagrangian variables is made in real space rather than in Fourier space. For jrj < jXj the parameter j is
pure imaginary and the flow is elliptic. For r = 0, the expression sign (r) in (15) is replaced by sign (X) and the flow is pure
rotational. Positive and negative values of k respectively correspond to hyperbolic and elliptic base flows, whereas the par-
ticular cases k = 1, �1 and 0 are associated with pure extensional flow, pure rotational flow and parallel shear (unbounded
Couette) flow, respectively. For the latter case, the matrix M̂ is given by
cM ¼
1 0 0
Xt 1 0
0 0 1

0
B@

1
CA for k ¼ 0: ð16Þ
Designating,
fðq; tÞ ¼ x̂ðkðq; tÞ; tÞ; ð17Þ
and utilizing the simple algebraic relation between the Fourier transformed velocity and vorticity vectors, i.e.
v̂ðkÞ ¼ ik�2½k� x̂ðkÞ�; ð18Þ
lead to the following final set of equations:
df1ðq; tÞ
dt

¼ �1
2
ðr�XÞf2ðq; tÞ �Xk�2k1½k1f2ðq; tÞ � k2f1ðq; tÞ� � mk2f1ðq; tÞ þ bN1ðq; tÞ; ð19aÞ

df2ðq; tÞ
dt

¼ �1
2
ðrþXÞf1ðq; tÞ �Xk�2k2½k1f2ðq; tÞ � k2f1ðq; tÞ� � mk2f2ðq; tÞ þ bN2ðq; tÞ; ð19bÞ

df3ðq; tÞ
dt

¼ Xk�2k3½k1f2ðq; tÞ � k2f1ðq; tÞ� � mk2f3ðq; tÞ þ bN3ðq; tÞ; ð19cÞ
where (19c) could be alternatively replaced by
f3ðq; tÞ ¼ �k�1
3 ½k1f1ðq; tÞ þ k2f2ðq; tÞ�: ð20Þ
2.4. Numerical procedure

The advantage of the theoretical model described above is that the nonlinear partial differential equations for the vorticity
disturbance in the physical space are replaced by corresponding ordinary nonlinear equations. In the following a simple
numerical procedure is outlined for solving these equations. We first choose the initial vortical disturbance in the physical
space, transform it into Fourier space where we perform numerical integration of the Lagrangian variables, and finally, at a
predetermined time, the spatial structure of the disturbance vorticity in the physical space is obtained by executing an in-
verse Fourier transform back to the physical space. For a given initial vortex the final solution is obtained (within minutes on
a standard laptop) using the software, MATLAB. It is noted that, for a similar calculation, the time required to perform a DNS
with the commercial software FLUENT is more than two orders of magnitude. Apart from the time, one has to write large
amounts of additional programs for the insertion/extraction of initial disturbance and further post-processing. Such a pro-
cedure is completely absent in the current method. Moreover, in the present method, shifting to any linear base flow and to
any kind of localized disturbance can easily be achieved. Some examples are presented in Section 3.

2.4.1. Initial conditions and flow parameters
Although any divergence free vortex disturbance could be chosen, it is convenient to follow the temporal evolution of a

localized Gaussian vortex for which the vorticity field and its Fourier transform are respectively given by
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xðr; t ¼ 0Þ ¼ rF � P0; F ¼ ðp1=2dÞ�3 expð�r2=d2Þ; ð21Þ

x̂ðk; t ¼ 0Þ ¼ fðq; t ¼ 0Þ ¼ i

ð2pÞ3
ðq� P0Þ exp �1

4
q2d2

� �
; ð22Þ
where r is the spherical radial co-ordinate, d is the representative length scale of the disturbance and P0 is its initial fluid
impulse. The strength of the initial vortex is characterized by e = xmax(t = 0)/X*, where xmax(t = 0) = 0.154jP0j/d4 for the
Gaussian vortex, X� ¼ 1

2 ðj X j þ j r jÞ and xmax (t) = maxjx(r, t)j. The magnitude of e is used to describe an initial vortex as
linear (e� 1) or nonlinear. The effect of viscosity is represented by the ‘vortex Reynolds number’, Re = X*d2/m. In the follow-
ing all length scales are normalized by d and time scales by 1/X*.

2.4.2. Numerical integration
After the initial vorticity field is transformed into the Fourier space, Eq. (19) is integrated in time using the Euler method.

The evaluation of the convolution sums in the nonlinear terms on the right hand sides of (19) is carried out by utilizing a
pseudospectral transform method (e.g. [20,21]). Accordingly, at a given time step, using (14), (18) and (16), each one of
the two terms constituting the multiplication products in bNmðkÞm = 1,2,3 (e.g. vn and oxm/@xn in vn@xm/@xn), is transformed
back to the physical space via inverse FFT, where their multiplication is carried out. Similarly, all the multiplication products
included in bNmðkÞ are transformed into the physical space and the sum of which is transformed back to the Fourier space via
FFT. Aliasing removal is done by truncation; however, for the results presented below where the disturbance dies out rapidly,
there is no need for this procedure providing the physical domain is sufficiently large.

2.4.3. Calculation of the vorticity components in the physical space
The vorticity components xm in the physical space is given by
xmðr; tÞ ¼
Z

d3kx̂mðk; tÞeikr: ð23Þ
However, this is not a straight forward step because the wave number vector k depends on time. To avoid this difficulty
the relation between the physical coordinates r0 = (x0,y0,z0), indicating the coordinates of the initial position of a fluid par-
ticle at time t = 0 and the coordinates r = (x,y,z) where the same particle has arrived at time t (following an unperturbed tra-
jectory), has to be derived. To do so we first pass from integration in k space to integration in q, using the incompressibility
condition, i.e. d3k = d3q, and the relation
k � r ¼ q � r0: ð24Þ
The above expression can be proven as follows:
k � r ¼ kmxm ¼ M̂mnqnxm ¼ qnðM̂T
nmxmÞ ¼ qnx0n ¼ q � r0; ð25Þ
where M̂ is the matrix relating k and q (14), the superscript T indicates a transposed matrix and x0n are the initial physical
coordinates of the fluid particle. Finally we obtain
xmðr; tÞ ¼ xmðr0ðr; tÞÞ ¼
Z

d3qfmðq; tÞei½q1x0ðr;tÞþq2y0ðr;tÞþq3z0 �; ð26Þ
where the relation between the initial position of the fluid particle and the position at time t, is given (using (25)) by
r0 ¼ ½M̂ðtÞ�T r:

3. Results

The purpose of this section is to demonstrate the capabilities of the mathematical–numerical approach described above.
Results for three canonical base flows, namely simple shear (k = 0), pure extensional flow (k = 1) and pure rotational flow
(k = �1) are presented, followed by a more general case for which k = �0.2. Before presenting the nonlinear results it is
important to note that the results associated with various linear cases were successfully compared with corresponding linear
theory. In particular, with the linear solutions for elliptic flow [10], for pure extensional flows [22] and for arbitrary hyper-
bolic flows [9].

The results associated with the evolution of nonlinear vortices in pure extensional flow and simple shear (Couette) are
compared with previously obtained DNS. For this purpose the values of d = 0.001[m], m = 10�6[m2/s] (corresponding to water)
and vortex Reynolds number Re = X*d2/m = 40 are taken in the calculations presented here. For the case of pure rotation and
for the more general case new results are presented for the same Reynolds number.

Fig. 3 shows the temporal evolution of the vortical structure embedded in plane stagnation flow (left column), simple
shear (middle column) and pure rotation (right column). The structures are shown by plotting iso-surfaces of vorticity mag-
nitude (jxj/xmax = 0.7 for plane stagnation and pure rotation flows and jxj/xmax = 0.6 for simple shear). In the plane stag-
nation flow (X = 0, r = �80[1/s]), the initial toroidal shape at T �X*t = 0 is developed into a counter-rotating vortex pair
(T = 1) which by T = 2 is further extended along the X = Y axis. As the initial magnitude of the vortex is relatively high



Fig. 3. Temporal evolution of localized vortices shown by vorticity iso-surfaces for (a) plane stagnation (e = 1, jxj/xmax = 0.7); (b) simple shear (e = 7.5, jxj/
xmax = 0.6) and (c) pure rotation (e = 1, jxj/xmax = 0.7).
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P0 = (0,2.5 � 10�10,0)[m4/s], (e = 1), its center moves away from the origin due to self-induced motion [12]. When a strong
initial vortex P0 = (0,1.95 � 10�9,0)[m4/s], (e = 7.5) is initially placed in simple shear (plane Couette flow, X = r = �40[1/s]),
the evolved structure (at T = 4) is that of a hairpin vortex. In the pure rotation base flow (X = 80[1/s], r = 0), the nonlinear
initial toroidal vortex (P0 = (0,2.5 � 10�10,0)[m4/s], e = 1) rotates around the z axis and splits into two symmetrical parts
by T = 2.5 and splits again at T = 5. While xmax increases with time for plane stagnation flow, it stays approximately the same
for simple shear (although the associated enstrophy integral is growing [11]) and in pure rotation it decreases rapidly.

The distributions of the dimensional vorticity magnitude (corresponding to the results presented in Fig. 3) along three
orthogonal axes at a fixed time (T = 1 for plane stagnation and pure rotation flows and T = 5 for simple shear), are indicated
in Fig. 4 by the plus symbols connected with solid lines. The results for plane stagnation flow, simple shear and pure rotation
are shown on the left (a), middle (b) and right (c) columns, respectively. For the plane stagnation flow and simple shear the
distributions are compared with corresponding results (shown by the circles connected with dotted lines), previously ob-
tained by Philip and Cohen [12] and Suponitsky et al. [11], respectively. For the pure rotation case we compare the results
obtained by the Euler method (in time) with the results of a second order Runge–Kutta method. For plane stagnation flow the
distributions are along the principal axes of the velocity gradient tensor X = Y, Z = 0 (axis of extension), X = �Y, Z = 0 (axis of
compression) and X = Y = 0, Z. Nonlinearity is evident by the non-symmetrical distributions along the first two axes. Good
agreement is obtained between the present calculations and the results obtained by DNS. For the strong nonlinear distur-
bance placed in simple shear the agreement at T = 5 is also very good. It should be noted that in the present calculations
the vortical structure is embedded in unbounded simple shear whereas the numerical results obtained by Suponitsky
et al. [11] are for Couette flow bounded between two walls. For the pure rotational flow the initial disturbance magnitude
is identical to the one of the plane stagnation flow and it can be seen that by the time T = 1, the vorticity magnitude along X, Y
and Z in this case is smaller than the one obtained in the plane stagnation. The results obtained by the two time integration
methods are almost identical; slight deviations could be observed only at longer times (not shown here). As we also have not



(a) (b) (c)

Fig. 4. Axial distributions of vorticity magnitudes corresponding to the results presented in Fig. 3 for (a) plane stagnation-comparison with PC (06) [12]
(e = 1, T = 1); (b) simple shear-comparison with SCB (05) [11] (e = 7.5, T = 5); (c) pure rotation – comparison between Euler and second order Runge–Kutta
integration methods in time (e = 1, T = 1).

Fig. 5. The base flow (top left) and iso-surfaces of jxj/xmax = 0.7 at various times for a general case of elliptic base flow (r = 32[1/s] and X = 48[1/s]), e = 1.
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noticed any significant difference between the results obtained by the Euler and the second order Runge–Kutta methods for
the rest of the results presented in this paper, we chose the use of the Euler method for its simplicity and efficiency. Nev-
ertheless, it should be noted that any integration method could be implemented in our proposed algorithm.

Finally the evolved structures for the more general case for which r = 32[1/s] and X = 48[1/s] (X* = 40) are shown in Fig. 5
by plotting iso-surfaces of vorticity magnitude (jxj/xmax = 0.7). On the top left corner of the figure the base flow velocity
field is plotted. For this case the base flow is elliptical (jrj < jxj) and therefore the streamlines are closed. Here we follow
the evolution in time of a nonlinear Gaussian vortex for which the initial fluid impulse is aligned along the positive x-axis
(P0 = (2.5 � 10�10,0,0)[m4/s], e = 1). The structure first rotates (T = 1.5) and then by T = 4 begins to split into three major parts
(an additional smaller part can be observed at T = 5 beneath the center part). In this case the enstrophy of the vortex de-
creases with time.

4. Conclusions

The evolution of localized vortical disturbances in homogenous shear can lead to the development of key structures (e.g.
CVPs and hairpin vortices) that have been observed in turbulent and transitional shear flows. We have developed an efficient
analytical-based method which allows to predict the nonlinear evolution of localized vortices in any planar homogenous
shear flow. In this novel method, the solution is carried out using Lagrangian variables in Fourier space. Comparison to avail-
able results in the literature shows high fidelity of the current method. Finally, it is worth mentioning that the presented
method can be extended without much effort to solve the transport of any nonlinear, localized, scalar quantity as well as
periodic disturbances in homogeneous shear flows. Among others, the set of such equations includes buoyancy driven
incompressible flow and transport of pollutants and chemical species.
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